
Damian Jörren

Umweltauswirkungen des Slacklinesports und Ableitung einer Handlungsempfehlung mit speziellen Betrachtungen zu Fixpunkten im Fels und dem präventiven Baumschutz

<u>Umweltauswirkungen von Slack-/Highlines</u>

Zugang/Zustieg/Aufenthalt

- Trittschäden Verlassen von markierten Wegen
- Störung von Brutzeiten, Wildschutzgebieten Missachtung von Begehungsbeschränkungen
- Lärm und Verschmutzungen dem Umfeld nicht angepasstes Verhalten
- Auslösen von Steinschlägen

Installation

- Trittschäden, an Vegetation, Abbruch von Felsstrukturen z.B. beim Abseilen
- verbleibende Anschlagpunkte im Fels
- Gefährdung Dritter (Spannen über Wege, Paraglider, Helikopter)

Spannvorgang/Begehung

- Be- und Überlastung von Anschlagpunkten (Abrieb, Abbruch, Absturz)
- Überlastung von Komponenten (Bruchgefahr, herumfliegende Teile)

<u>Ursachen von Umweltauswirkungen, Umwelt - und Personenschäden</u>

Eine Mischung aus subjektiven und objektiven Wirkungen und Gefahren

Subjektive, also von Personen abhängige Wirkungen und Gefahren sind z.B.:

- unzureichende Fähigkeiten in der Sicherungs- und Aufbautechnik
- mangelndes Risikobewusstsein und Selbstüberschätzung
- fehlerhafte Planung und ungeeignetes oder falsch ausgewähltes Material
- mangeInde Kenntnis und Aufklärung zum Thema Baumschutz z.B. fehlender Rindenschutz
- einer Tendenz zur Nachlässigkeit

Objektive, also von der Umwelt abhängige Wirkungen und Gefahren sind z.B.:

- Naturgefahren (Wettereinbruch, Steinschlag, Lawinen)
- geringe Gesteinsfestigkeit
- nicht sichtbare Beschädigung des Fixpunktes (hohle Bäume)

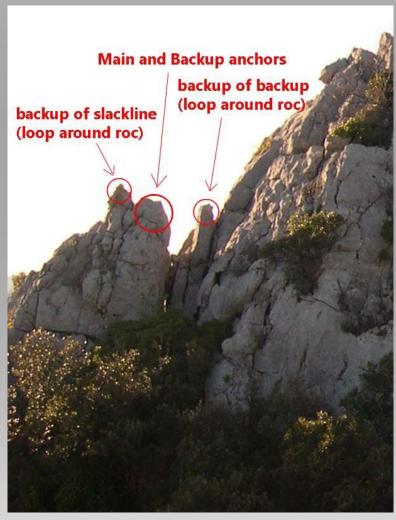
umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpunkte im fels • baumschutz

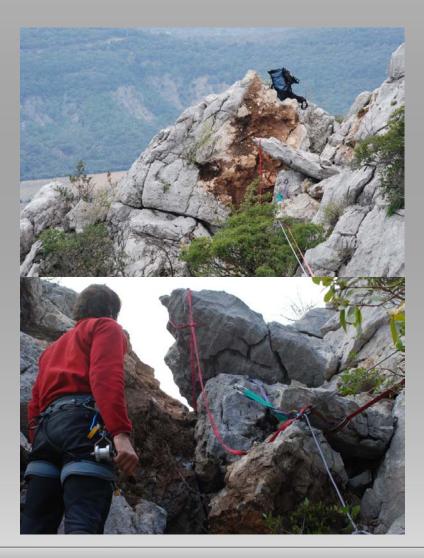
Wirkungsmechanismen Slack- und Longline

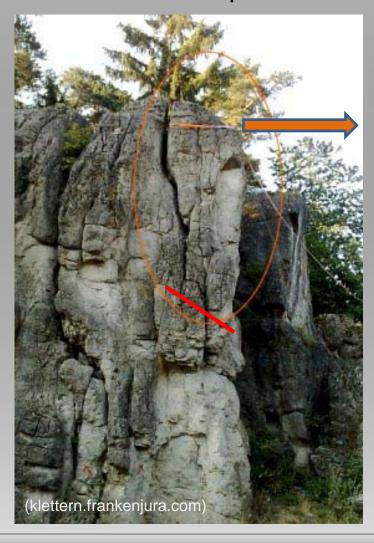
umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpun<u>kte im fels • baumschutz</u>

Wirkungsmechanismen Highline

Blockrutschung in Joshua Tree, USA - Gefahr durch instabilen Fixpunkt




(Slackline.com, 2005)


Felssturz Montferrand, Frankreich - Aus-/Abbruch des Fixpunktes

(Photos: J. Tybon in Mellet et al., 2011)

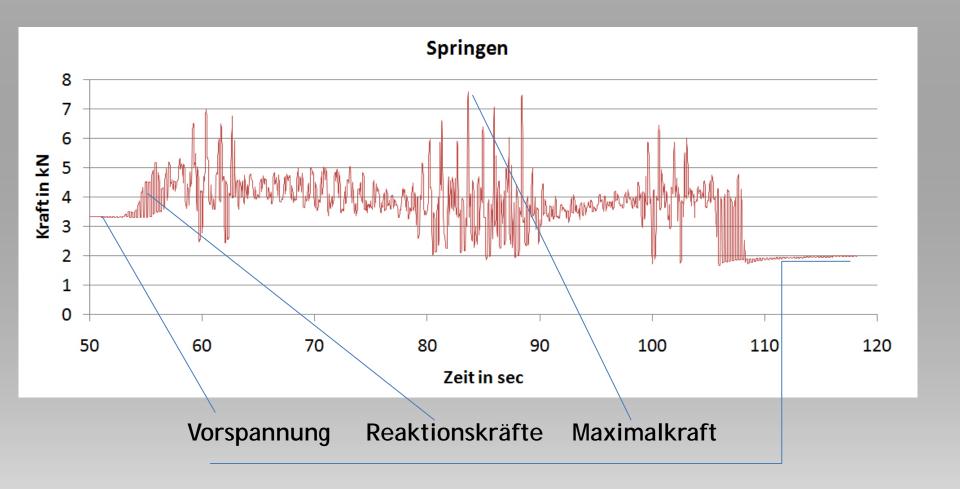
Felssturz, Fränkische Alb, Deutschland Aus-/Abbruch des Fixpunktes

umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpunkte im fels • baumschutz

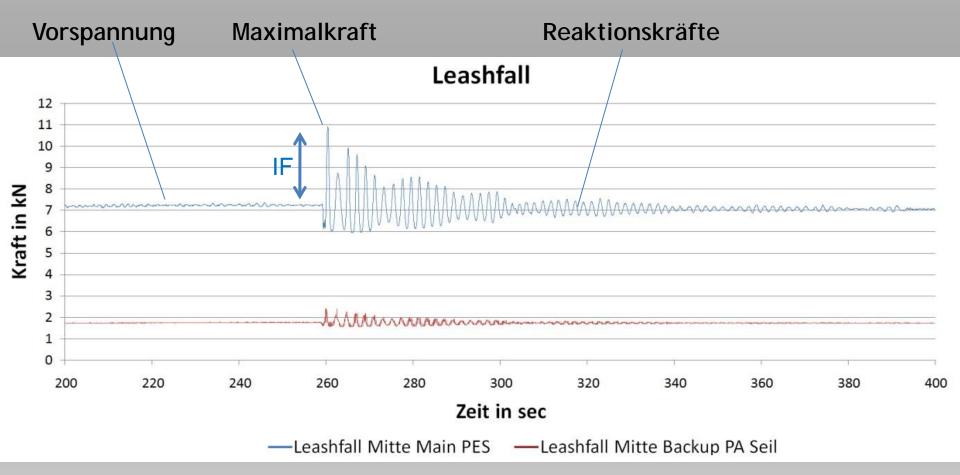
Kräfte in Slacklinesystemen

Vorspannung und Reaktionskräfte

- 1. Vorspannkraft/Vorspannung im Slacklinesystem (Spannvorgang, Relaxation)
- 2. Reaktionskräfte Gewichtskraft des Slackliners (Masse)
- 3. Reaktionskräfte Dynamik und Position des Slackliners (Bewegung)
- 4. Reaktionskräfte Kraftspitzen (Schocklasten: Leashfall, Fixpunktversagen)


umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpunkte im fels • baumschutz

Erreichbare Vorspannung

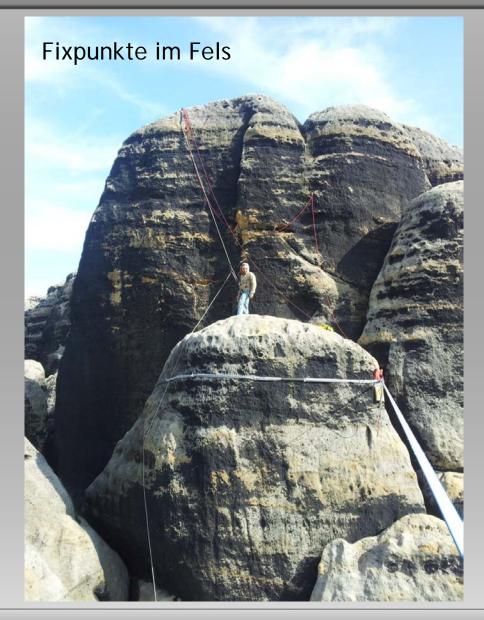

Spannsystem	erreichbare Vorspannung (in kN)	
Kurzhebelratsche (35mm Breite)	2-3,5	
Langhebelratsche (50mm Breite)	4,5-8	
Bandflaschenzug 1 (Ellington)	3-4	
Bandflaschenzug 2 (Ellington mit Potenzierer)	5-8	
Rollenflaschenzug 1 (5:1 x Potenzierer 3:1)	10-12	
Rollenflaschenzug 2 (9:1 x Potenzierer 3:1)	12-20	
Hebelkettenzug	15	
Stirnradkettenzug	50	

umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpunkte im fels • baumschutz

Kraftmessung

Kraftmessung

Impact-Faktor


gering: IF 1,1 groß: IF 2,5

Sitzen < Stehen/Walk < Surf/Bounce < Catch/Sprung < Leashfall

umweltauswirkungen
fallbeispiele
kräfte im slacklinesystem
fixpunkte im fels
baumschutz

Kräfte abhängig vom Spannsystem

Тур	Länge in m	Vorspannung in kN	Maximalkraft in kN	IF
Anfänger	5-20	3-5	4,5-7,5	1,5-2,0
Jumpline	15-25	4-12	8-16	1,3-2,4
Longline	30-100	5-12	6-13	1,0-1,2
Highline	10-60	3-12	7-20	1,5-2,5

Einfluss der Geologie

Die Gesteinsart & Morphologie bestimmen u.a.:

- notwendige Komponenten und Materialien des Highlinesystems
- Komplexität des Aufbaus
- Belastbarkeit und Sicherheit der Fixpunkte
- Risiken während des Zu-/Abstiegs z.B. durch Steinschlag
- Risiken während dem Verweilen vor Ort

umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpunkte im fels • baumschutz

Gesteinsart und Gesteinshärte Fixpunkte im Fels

Felsnadel Felsköpfel

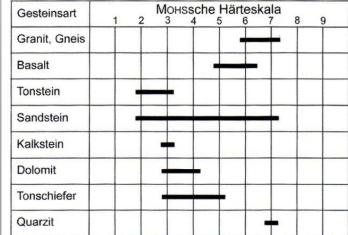
Klemmblock

Felsblock

Felssanduhr

Felslöcher

Riss


Baum

Felsschuppe

Schlaghaken

Verbundhaken

mech. Bohrhaken

(aus Prinz 2006)

Anforderung an an Fixpunkte im Fels

Der Fixpunkt muss den Belastungen standhalten!

Maximalkraft = Vorspannung x Impact-Faktor

Beachte einen entsprechenden Sicherheitsfaktor!

Vorspannung der Highline x Sicherheitsfaktor = Mindestbruchlast des Fixpunktes

Sicherheitsfaktor sollte 5 bis 10 betragen

Gründe: Erhöhung der Vorspannung, Änderung des IF, fehlende Messtechnik,

Dauerschwellbelastung, Schocklasten

Beurteile die Fixpunkte richtig!

keine genormten Fixpunkte

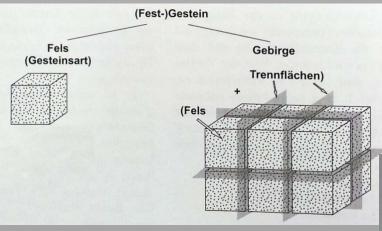
Funktionsweise und Belastbarkeit des Fixpunktes muss abschätzbar sein

-> Fachkenntnis, rationales Beurteilungsvermögen und Erfahrung

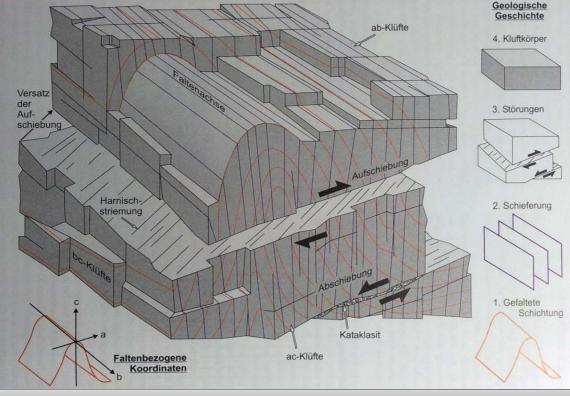
Hinterlasse ein Minimum an/keine Spuren! keine Beschädigung bei Installation/Spannvorgang/Begehung

- einhalten des jeweiligen Sicherheitsfaktors
- fachgerechter Installation
- Polsterung
- Abrieb-, Kanten- und Baum- sowie Infrastrukturschutz (z.B. Geländer, Pfosten, etc.)
- -> Beschädigungen an Fixpunkt und Material muss vermieden werden

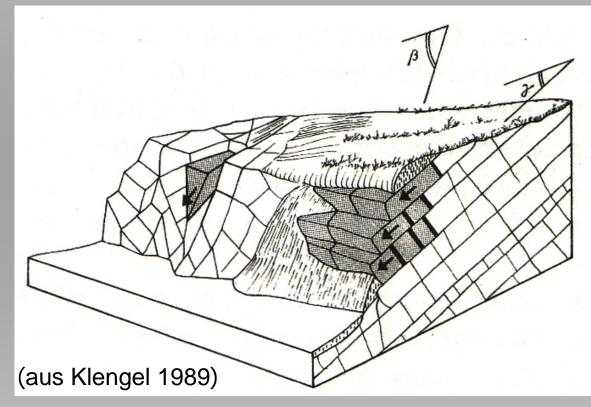
Bedingung für eine langfristige Ausübung des Slacklinesports

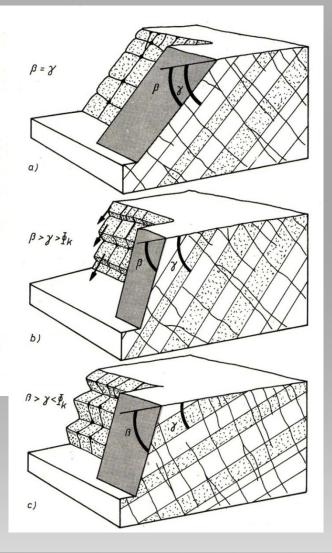

relevant da:

- Wiederholung der Highlines
- evtl. hohe Belastungen der dauerhaft an Ort und Stelle verbliebenen Fixpunkte
- Menschenleben daran hängen
- Akzeptanz des Sports von Außen = Umweltverträglichkeit ist gegeben

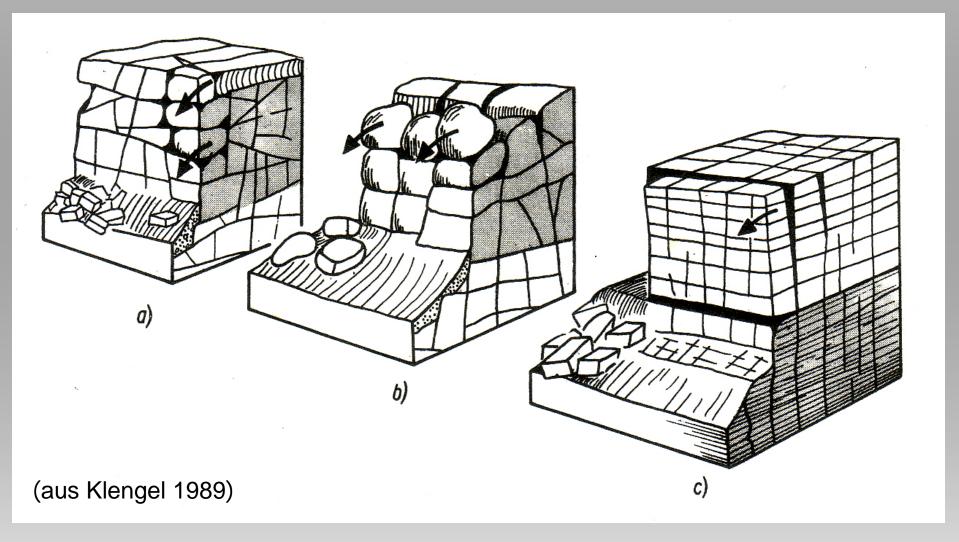

Zusammenfassend die wichtigsten Fragen zur Auswahl der Fixpunkte:

- Welche maximale Kraft erwarte ich in meinem Highlinesystem?
- Wie ist die Funktionsweise des Fixpunktes und was sind potentielle Schwachstellen und Versagensmechanismen?
- Kann ich die Belastbarkeit des Fixpunktes objektiv einschätzen?
- Ist der Fixpunkt den erwarten Belastungen inkl. Sicherheitspuffer gewachsen?
- Was geschieht im Versagensfall und wie kann ich dem präventiv begegnen?
- Nutze ich den Fixpunkt ohne Spuren zu hinterlassen?

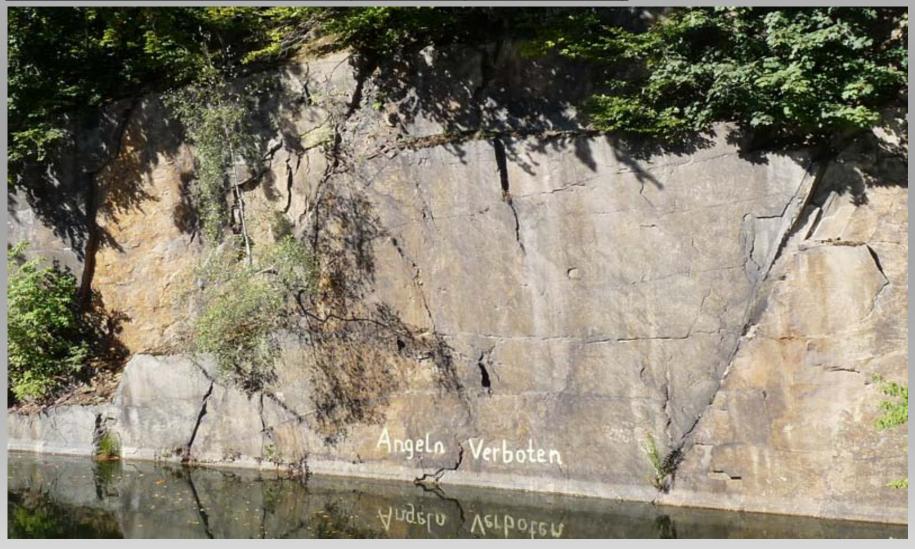

Trennflächen, Kluftkörper und Verwitterung



(aus Sebastian 2009)

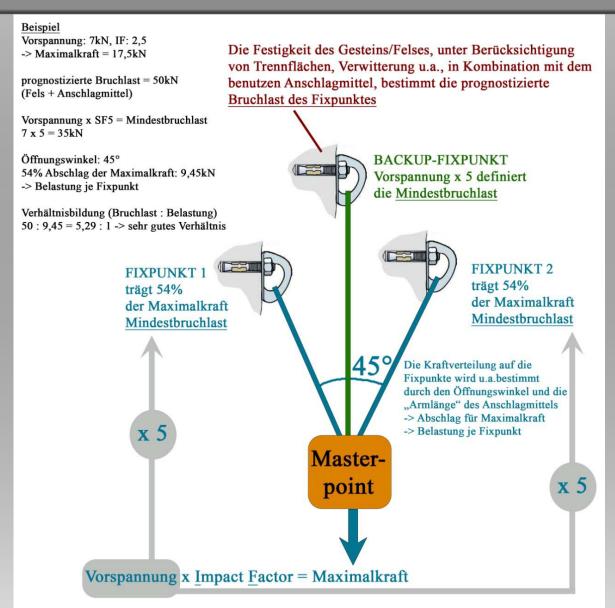


Trennflächen und Böschungswinkel



Trennflächengefüge und Verwitterung

Trennflächen in der Realität - großräumige Betrachtung



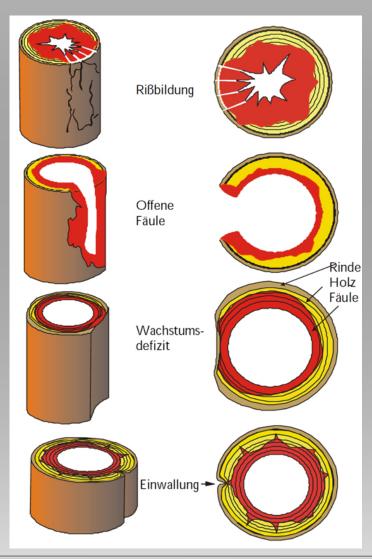
kräfte im slacklinesystem

Trennflächen in der Realität - kleinräumige Betrachtung

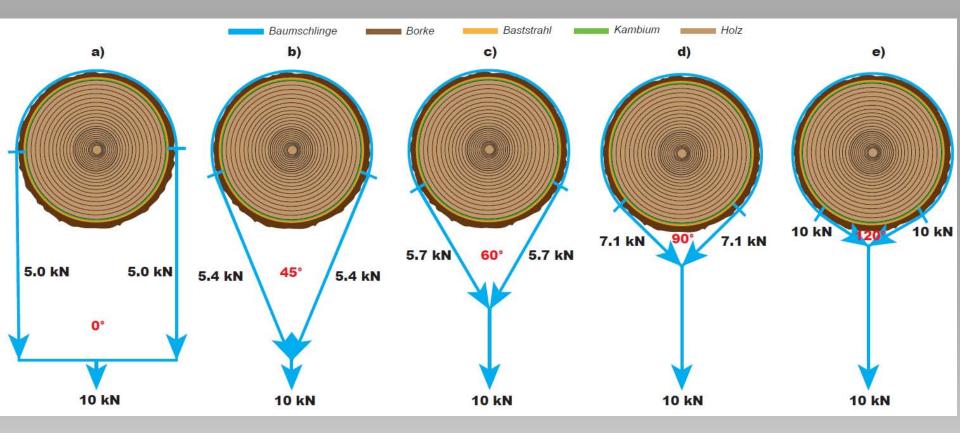
Generelle Empfehlungen und Aussagen zu (Slack)/Highlines:

- Lerne von erfahrenen Highlinern.
- Prüfe deine Anschlagpunkte vor, während und nach jedem Spannvorgang/Begehung.
- Hintersichere dein primäres System (mainline) durch ein backup.
- Nutze einen separaten Anschlagpunkt für die Hintersicherung.
- Bei zweifelhafter Felsqualität, großflächige Verteilung in unterschiedliche Kluftkörper
- langsames herantasten an höhere Maximalkräfte des Slack-/Highlinesystems (> 10kN)
- Selbst der bestplatzierte Fixpunkt ist nicht besser als der Fels in dem er steckt.
- Handle zurückhaltend, vorausschauend und nachhaltig (Begehungsverbote, Bohrverbote).
- Tritt in den Dialog mit den lokalen Autoritäten (Stärkung von Verständnis und Akzeptanz).
- Im Zweifelsfall sollte das Projekt oder die Aktion abgebrochen werden.
- Geringe Vorspannungen und ein defensives Verhalten auf der Slack-/Highline halten die Belastungen gering.

umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpunkte im fels • baumschul

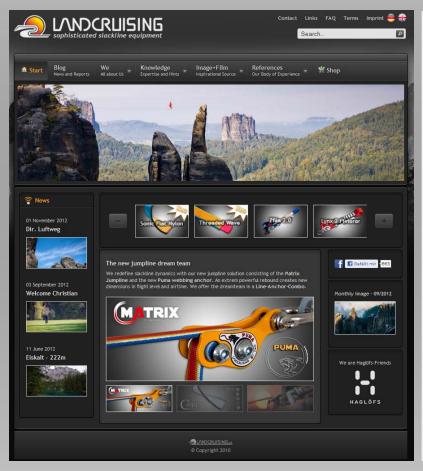

Baumschutz

- Trittschäden
- Bodenverdichtung
- Belastung durch Zugkräfte
- Belastung durch Druckkräfte
- Belastung durch Reibungskräfte und Abrieb
- Belastung durch Torsions- und Scherkräfte


umweltauswirkungen • fallbeispiele • kräfte im slacklinesystem • fixpu<u>nkte im fels • baumschut.</u>

Schadsymtome an Bäumen

(aus Reinhartz & Schlag 1997)


Druckbelastung an Bäumen

Druckbelastung an Bäumen

umweltauswirkungen
fallbeispiele
kräfte im slacklinesystem
fixpunkte im fels
baumschutz

www.landcruising.de

www.slacklab.de

Habt ihr Fragen?